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Introduction



Deep Learning: An important cloud workload

⚫ Deep Learning is ubiquitous: CV, NLP, Recommend…

⚫ DL jobs are compute-intensive, so need expensive hardware

• Dominant platform today: GPUs

• Large company runs DL in shared GPU clusters(billions of $)



Deep Learning Training (DLT)

⚫ Build a model for an end-to-end application

• Select best model architecture, invent new architectures, tune accuracy, …

• Key to DL Innovation

⚫ DLT is mostly trial-and-error: Little theoretical understanding

• Will a model architecture work?

• Don’t know — Train it And Measure!

• Lots of trials => high cost:

• Training = Significant Fraction of GPU Usage!



DL Training in GPU Clusters

Cluster scheduler decides how to allocate resources to jobs in order to minimize 
training time, maximize cluster utilization, or ensure fairness

Scheduler

Many users and DLT jobs Shared Compute Cluster



Q: How are DL training jobs scheduled in the 
existing ML systems?

Like Borg(Google), Yarn(Hadoop), Mesos(Apache)… 



Cluster Schedulers Today

⚫ Treat DLT jobs as generic big-data jobs(error)

• DLT jobs exhibit certain unique features distinct from big data jobs[1]

⚫ Expect users to specify the number of resources for each job(sounds not good)

• Rely heavily on the engineering experience of users = > Often leading to inefficient 
resource use[2]

⚫ Schedule a DLT job on a GPU exclusively, and job holds it until completion 
(sounds not good)

• Static resource allocation to jobs may prevent the best training performance[3]



Some Motivations or Problems?  

(a)GPU resource statistic on a GPU 
production cluster[4]

⚫ A DLT job usually can only use parts of a GPU

• Model training often involves many different steps, 
such as data preprocessing, etc. Some steps are 
not suitable for the GPU

Problem #1: Low resource utilization[4]



Some Motivations or Problems?  
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Problem #1: Low resource utilization[4]

(b)Average GPU idle waiting 
waste from gang-schedule[4]

⚫ Idle waiting for gang-schedule

• Gang-schedule: DL training requires all the GPUs 
to be allocated simultaneously in an all-or-nothing
manner

• Multi-GPU training jobs require gang-scheduling

• A job will not start training unless all required GPUs 
are simultaneously available



Problem #2: High Latency(head-of-line Blocking)[5]

Some Motivations or Problems?  

⚫ Long queueing delays for short-running jobs

(a)CDF of normalized instance
queueing delays[5]

(b)CDF of queueing delays w.r.t.
GPU requests per instance[5]

• Long DLT job Runtime: Several days!

• GPU sharing



Don't worry, 

let's break it down!



DLT Workloads’ Unique Characteristics 
A series of studies have characterized training workloads from the production GPU 
datacenters, including Alibaba [5], Microsoft [6] and SenseTime [7]. The characteristics 
are summarized as below.

⚫ Domain knowledge: Intra-job predictability[6,8]

• Each job performs repetitive iterations with 
constant behaviors and duration

• To predict future GPU memory usage and job 
completion time



⚫ Domain knowledge: Feedback-driven exploration[8]

• Training a DL model is a typical trial-and-error process

• Early-feedback on DLT jobs is critical, especially in the initial stages of training

• Select the model structure

• specify the hyper-parameters, including: 

• the number of layers/weights in the model

• minibatch size

• learning rate

• …

These are typically chosen by the user based on domain knowledge and trial-
and-error, and can sometimes even result in early training failure. 

DLT Workloads’ Unique Characteristics 



⚫ Inherent Heterogeneity[1](sounds not accurate) + Interference Sensitivity[8]()

• When running in a shared execution environment, DLT jobs might interfere 
with each other due to resource contention

• Jobs widely differ in terms of memory usage, GPU core utilization, sensitivity 
to interconnect bandwidth, and/or interference from other jobs

(b)1-GPU interference[8] (c)NIC interference[8]

DLT Workloads’ Unique Characteristics 

(a)Heterogeneous Affinity[1]



⚫ Placement Sensitivity[1,8]

(b)Intra-server locality (c)Inter-server locality

• The runtime speed of some distributed DL jobs are bounded by device-to-device 
communication

• The communication sensitivity of training jobs depends on the inherent 
property of the model structure

DLT Workloads’ Unique Characteristics 

(a)Job Placement[1]



Review the Cluster Schedulers Today

⚫ Treat DLT jobs as generic big-data jobs(error)

• DLT jobs exhibit certain unique features distinct from big data jobs[1] => get()

Expect users to specify the number 
of resources for each job(sounds 
not good)

Schedule a DLT job on a GPU
exclusively, and job holds it until 
completion (sounds not good)

Causing some scheduling 
challenges?

Making cluster scheduling 
of DLT jobs inefficient?

==> Maybe it's a process of mutual influence



⚫ Resource Scheduling: Unpredictable Training Time[9]

• Unknown execution time of DL training jobs

• Predict job execution time

• Job execution time is useful when minimizing JCT(Job Completion Time)

• Use the smooth loss curve of DL training jobs(Optimus[10])

Challenges for Scheduling DL Training Jobs



• Unknown execution time of DL training jobs

• Predict job execution time

• Job execution time is useful when minimizing JCT

• Use the smooth loss curve of DL training jobs(Optimus[10])

It’s hard to predict the training time of DLT jobs in many cases!

Challenges for Scheduling DL Training Jobs

⚫ Resource Scheduling: Unpredictable Training Time[9]



⚫ Job Placement: Over-Aggressive Job Consolidation[9]

• Network overhead in DL training

Challenges for Scheduling DL Training Jobs



• Network overhead in DL training

Challenges for Scheduling DL Training Jobs

• Consolidated placement for good training performance

⚫ Job Placement: Over-Aggressive Job Consolidation[9]



• Network overhead in DL training

Challenges for Scheduling DL Training Jobs

• Consolidated placement for good training performance

• Fragmented free GPUs in the cluster

• Longer queuing delay

⚫ Job Placement: Over-Aggressive Job Consolidation[9]



Well, 

everything seems to fit together!



Review the Cluster Schedulers Today

⚫ Treat DLT jobs as generic big-data jobs(error)

• DLT jobs exhibit certain unique features distinct from big data jobs[1] => get()

Expect users to specify the number 
of resources for each job(sounds 
not good)

Schedule a DLT job on a GPU
exclusively, and job holds it until 
completion (sounds not good)

Causing some scheduling 
challenges?

Making cluster scheduling 
of DLT jobs inefficient?

==> Maybe it's a process of mutual influence

Customize: An Effective and Efficient GPU Cluster Scheduler for 
Distributed Deep Learning Training Jobs



Existing Work

Different Scheduling Objectives



Different Scheduling Objectives

• Reduce the average queuing and execution time of training jobs.

• Reduce power consumption.

• Guarantee the fairness among different entities (user-level, job-level).

• Maximize the utilization of resource.

• Ensure the job can be done before the specified deadline.

• ...



⚫ Optimus[10] (Elastic scheduling)

• Approach: Performance Modelling

• Advantages: JCT Reduction

⚫ Tiresias[9]

• Approach: Gittins index; Least-Attained Service (LAS)

• Advantages: Information-agnostic

⚫ Aonline[11] (Elastic scheduling)

• Approach: Integer Linear Programming

• Advantages: JCT Reduction

Reduce JCT(Job Completion Time)



⚫ ANDREAS[12] (reduce energy consumption)

• Approach: Randomized Greedy Algorithm

• Advantages: Energy Cost Reduction

⚫ Themis[13] (guarantee fairness)

• Approaches: Finish-Time Fairness; Auction Bid

• Advantages: Better Fairness

⚫ Gandiva[8](maximize the utilization of resource)(Elastic scheduling)

• Approaches: Time-slicing; Migration; Grow-shrink

• Advantages: Better GPU Utilization

⚫ Chronus[14](guarantee ddl)

• Approach: Linear Programming; Local Search Allocation

• Advantages: SLO Guarantee

Other Objectives



Future Work And Discussion



Some Ideas? => Maybe they are enabled

⚫ Objectives

• SLO guarantee

• Energy consumption optimization

⚫ Considerations

• Resource heterogeneity

• Predicted job’s information inaccuracy

⚫ Methods

• GPU sharing

• Elastic scheduling
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