
Deep Learning Workloads Scheduling in GPU Clusters

Qingwei Ji

qingweiji1217@gmail.com

University of Electronic Science and Technology of China, Chengdu, P. R. China

April 7, 2023

Outline

⚫ Introduction

⚫ Various Schedulers for DL Training Workloads

⚫ Future Work And Discussion

⚫ References

Introduction

Deep Learning: An important cloud workload

⚫ Deep Learning is ubiquitous: CV, NLP, Recommend…

⚫ DL jobs are compute-intensive, so need expensive hardware

• Dominant platform today: GPUs

• Large company runs DL in shared GPU clusters(billions of $)

Deep Learning Training (DLT)

⚫ Build a model for an end-to-end application

• Select best model architecture, invent new architectures, tune accuracy, …

• Key to DL Innovation

⚫ DLT is mostly trial-and-error: Little theoretical understanding

• Will a model architecture work?

• Don’t know — Train it And Measure!

• Lots of trials => high cost:

• Training = Significant Fraction of GPU Usage!

DL Training in GPU Clusters

Cluster scheduler decides how to allocate resources to jobs in order to minimize
training time, maximize cluster utilization, or ensure fairness

Scheduler

Many users and DLT jobs Shared Compute Cluster

Q: How are DL training jobs scheduled in the
existing ML systems?

Like Borg(Google), Yarn(Hadoop), Mesos(Apache)…

Cluster Schedulers Today

⚫ Treat DLT jobs as generic big-data jobs(error)

• DLT jobs exhibit certain unique features distinct from big data jobs[1]

⚫ Expect users to specify the number of resources for each job(sounds not good)

• Rely heavily on the engineering experience of users = > Often leading to inefficient
resource use[2]

⚫ Schedule a DLT job on a GPU exclusively, and job holds it until completion
(sounds not good)

• Static resource allocation to jobs may prevent the best training performance[3]

Some Motivations or Problems?

(a)GPU resource statistic on a GPU
production cluster[4]

⚫ A DLT job usually can only use parts of a GPU

• Model training often involves many different steps,
such as data preprocessing, etc. Some steps are
not suitable for the GPU

Problem #1: Low resource utilization[4]

Some Motivations or Problems?

4/22

Problem #1: Low resource utilization[4]

(b)Average GPU idle waiting
waste from gang-schedule[4]

⚫ Idle waiting for gang-schedule

• Gang-schedule: DL training requires all the GPUs
to be allocated simultaneously in an all-or-nothing
manner

• Multi-GPU training jobs require gang-scheduling

• A job will not start training unless all required GPUs
are simultaneously available

Problem #2: High Latency(head-of-line Blocking)[5]

Some Motivations or Problems?

⚫ Long queueing delays for short-running jobs

(a)CDF of normalized instance
queueing delays[5]

(b)CDF of queueing delays w.r.t.
GPU requests per instance[5]

• Long DLT job Runtime: Several days!

• GPU sharing

Don't worry,

let's break it down!

DLT Workloads’ Unique Characteristics
A series of studies have characterized training workloads from the production GPU
datacenters, including Alibaba [5], Microsoft [6] and SenseTime [7]. The characteristics
are summarized as below.

⚫ Domain knowledge: Intra-job predictability[6,8]

• Each job performs repetitive iterations with
constant behaviors and duration

• To predict future GPU memory usage and job
completion time

⚫ Domain knowledge: Feedback-driven exploration[8]

• Training a DL model is a typical trial-and-error process

• Early-feedback on DLT jobs is critical, especially in the initial stages of training

• Select the model structure

• specify the hyper-parameters, including:

• the number of layers/weights in the model

• minibatch size

• learning rate

• …

These are typically chosen by the user based on domain knowledge and trial-
and-error, and can sometimes even result in early training failure.

DLT Workloads’ Unique Characteristics

⚫ Inherent Heterogeneity[1](sounds not accurate) + Interference Sensitivity[8]()

• When running in a shared execution environment, DLT jobs might interfere
with each other due to resource contention

• Jobs widely differ in terms of memory usage, GPU core utilization, sensitivity
to interconnect bandwidth, and/or interference from other jobs

(b)1-GPU interference[8] (c)NIC interference[8]

DLT Workloads’ Unique Characteristics

(a)Heterogeneous Affinity[1]

⚫ Placement Sensitivity[1,8]

(b)Intra-server locality (c)Inter-server locality

• The runtime speed of some distributed DL jobs are bounded by device-to-device
communication

• The communication sensitivity of training jobs depends on the inherent
property of the model structure

DLT Workloads’ Unique Characteristics

(a)Job Placement[1]

Review the Cluster Schedulers Today

⚫ Treat DLT jobs as generic big-data jobs(error)

• DLT jobs exhibit certain unique features distinct from big data jobs[1] => get()

Expect users to specify the number
of resources for each job(sounds
not good)

Schedule a DLT job on a GPU
exclusively, and job holds it until
completion (sounds not good)

Causing some scheduling
challenges?

Making cluster scheduling
of DLT jobs inefficient?

==> Maybe it's a process of mutual influence

⚫ Resource Scheduling: Unpredictable Training Time[9]

• Unknown execution time of DL training jobs

• Predict job execution time

• Job execution time is useful when minimizing JCT(Job Completion Time)

• Use the smooth loss curve of DL training jobs(Optimus[10])

Challenges for Scheduling DL Training Jobs

• Unknown execution time of DL training jobs

• Predict job execution time

• Job execution time is useful when minimizing JCT

• Use the smooth loss curve of DL training jobs(Optimus[10])

It’s hard to predict the training time of DLT jobs in many cases!

Challenges for Scheduling DL Training Jobs

⚫ Resource Scheduling: Unpredictable Training Time[9]

⚫ Job Placement: Over-Aggressive Job Consolidation[9]

• Network overhead in DL training

Challenges for Scheduling DL Training Jobs

• Network overhead in DL training

Challenges for Scheduling DL Training Jobs

• Consolidated placement for good training performance

⚫ Job Placement: Over-Aggressive Job Consolidation[9]

• Network overhead in DL training

Challenges for Scheduling DL Training Jobs

• Consolidated placement for good training performance

• Fragmented free GPUs in the cluster

• Longer queuing delay

⚫ Job Placement: Over-Aggressive Job Consolidation[9]

Well,

everything seems to fit together!

Review the Cluster Schedulers Today

⚫ Treat DLT jobs as generic big-data jobs(error)

• DLT jobs exhibit certain unique features distinct from big data jobs[1] => get()

Expect users to specify the number
of resources for each job(sounds
not good)

Schedule a DLT job on a GPU
exclusively, and job holds it until
completion (sounds not good)

Causing some scheduling
challenges?

Making cluster scheduling
of DLT jobs inefficient?

==> Maybe it's a process of mutual influence

Customize: An Effective and Efficient GPU Cluster Scheduler for
Distributed Deep Learning Training Jobs

Existing Work

Different Scheduling Objectives

Different Scheduling Objectives

• Reduce the average queuing and execution time of training jobs.

• Reduce power consumption.

• Guarantee the fairness among different entities (user-level, job-level).

• Maximize the utilization of resource.

• Ensure the job can be done before the specified deadline.

• ...

⚫ Optimus[10] (Elastic scheduling)

• Approach: Performance Modelling

• Advantages: JCT Reduction

⚫ Tiresias[9]

• Approach: Gittins index; Least-Attained Service (LAS)

• Advantages: Information-agnostic

⚫ Aonline[11] (Elastic scheduling)

• Approach: Integer Linear Programming

• Advantages: JCT Reduction

Reduce JCT(Job Completion Time)

⚫ ANDREAS[12] (reduce energy consumption)

• Approach: Randomized Greedy Algorithm

• Advantages: Energy Cost Reduction

⚫ Themis[13] (guarantee fairness)

• Approaches: Finish-Time Fairness; Auction Bid

• Advantages: Better Fairness

⚫ Gandiva[8](maximize the utilization of resource)(Elastic scheduling)

• Approaches: Time-slicing; Migration; Grow-shrink

• Advantages: Better GPU Utilization

⚫ Chronus[14](guarantee ddl)

• Approach: Linear Programming; Local Search Allocation

• Advantages: SLO Guarantee

Other Objectives

Future Work And Discussion

Some Ideas? => Maybe they are enabled

⚫ Objectives

• SLO guarantee

• Energy consumption optimization

⚫ Considerations

• Resource heterogeneity

• Predicted job’s information inaccuracy

⚫ Methods

• GPU sharing

• Elastic scheduling

References

[1] Gao W, Hu Q, Ye Z, et al. Deep Learning Workload Scheduling in GPU Datacenters:

Taxonomy, Challenges and Vision[J]. arXiv preprint arXiv:2205.11913, 2022.

[2] Qiao A, Choe S K, Subramanya S J, et al. Pollux: Co-adaptive Cluster Scheduling for

Goodput-Optimized Deep Learning[C]//OSDI. 2021, 21: 1-18.

[3] Bao Y, Peng Y, Wu C, et al. Online job scheduling in distributed machine learning

clusters[C]//IEEE INFOCOM 2018-IEEE Conference on Computer Communications. IEEE,

2018: 495-503.

[4] Xiao W, Ren S, Li Y, et al. AntMan: Dynamic Scaling on GPU Clusters for Deep

Learning[C]//OSDI. 2020: 533-548.

[5] Weng Q, Xiao W, Yu Y, et al. MLaaS in the wild: Workload analysis and scheduling in Large-

Scale heterogeneous GPU clusters[C]//19th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 22). USENIX Association, 2022: 945-960.

[6] Jeon M, Venkataraman S, Phanishayee A, et al. Analysis of Large-Scale Multi-Tenant GPU

Clusters for DNN Training Workloads[C]//USENIX Annual Technical Conference. 2019: 947-

960.

[7] Hu Q, Sun P, Yan S, et al. Characterization and prediction of deep learning workloads in large-

scale gpu datacenters[C]//Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis. 2021: 1-15.

[8] Xiao W, Bhardwaj R, Ramjee R, et al. Gandiva: Introspective cluster scheduling for deep

learning[C]//13th {USENIX} Symposium on Operating Systems Design and Implementation

({OSDI} 18). 2018: 595-610.

[9] Gu J, Chowdhury M, Shin K G, et al. Tiresias: A GPU Cluster Manager for Distributed Deep

Learning[C]//NSDI. 2019, 19: 485-500.

[10] Peng Y, Bao Y, Chen Y, et al. Optimus: an efficient dynamic resource scheduler for deep

learning clusters[C]//Proceedings of the Thirteenth EuroSys Conference. 2018: 1-14.

[11] Zhou R, Pang J, Zhang Q, et al. Online scheduling algorithm for heterogeneous distributed

machine learning jobs[J]. IEEE Transactions on Cloud Computing, 2022.

[12] Filippini F, Ardagna D, Lattuada M, et al. ANDREAS: Artificial intelligence traiNing scheDuler

foR accElerAted resource clusterS[C]//2021 8th International Conference on Future Internet

of Things and Cloud (FiCloud). IEEE, 2021: 388-393.

[13] Mahajan K, Balasubramanian A, Singhvi A, et al. Themis: Fair and efficient GPU cluster

scheduling[C]//17th USENIX Symposium on Networked Systems Design and Implementation.

2020.

[14] Gao W, Ye Z, Sun P, et al. Chronus: A novel deadline-aware scheduler for deep learning

training jobs[C]//Proceedings of the ACM Symposium on Cloud Computing. 2021: 609-623.

	幻灯片 1: Deep Learning Workloads Scheduling in GPU Clusters
	幻灯片 2: Outline
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7: Q: How are DL training jobs scheduled in the existing ML systems? Like Borg(Google), Yarn(Hadoop), Mesos(Apache)…
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12: Don't worry, let's break it down!
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23: Well, everything seems to fit together!
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31: References
	幻灯片 32
	幻灯片 33

