Deep Learning Workloads Scheduling in GPU Clusters

Qingwei Ji qingweiji1217@gmail.com University of Electronic Science and Technology of China, Chengdu, P. R. China April 7, 2023

- Introduction
- Various Schedulers for DL Training Workloads
- Future Work And Discussion
- <u>References</u>

Introduction

Deep Learning: An important cloud workload

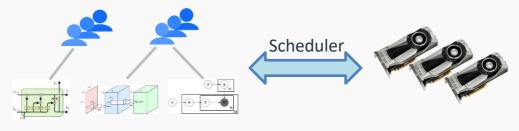
• Deep Learning is *ubiquitous*: CV, NLP, Recommend...

- DL jobs are compute-intensive, so need expensive hardware
 - Dominant platform today: GPUs
 - Large company runs DL in shared GPU clusters(billions of \$)

Deep Learning Training (DLT)

- Build a model for an end-to-end application
 - Select best model architecture, invent new architectures, tune accuracy, ...
 - Key to DL Innovation
- DLT is mostly *trial-and-error*: Little theoretical understanding
 - Will a model architecture work?
 - Don't know Train it And Measure!
 - Lots of trials => high cost:
 - Training = Significant Fraction of GPU Usage!

DL Training in GPU Clusters



Many users and DLT jobs

Shared Compute Cluster

Cluster scheduler decides how to allocate resources to jobs in order to minimize *training time*, maximize *cluster utilization*, or ensure *fairness*

Q: How are DL training jobs scheduled in the existing ML systems?

Like Borg(Google), Yarn(Hadoop), Mesos(Apache)...

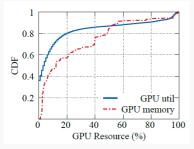
Cluster Schedulers Today

- Treat DLT jobs as generic big-data jobs(error)
 - DLT jobs exhibit certain *unique features* distinct from big data jobs[1]
- Expect users to specify the number of resources for each job(sounds not good)
 - Rely heavily on the engineering experience of users = > Often leading to *inefficient* resource use[2]
- Schedule a DLT job on a GPU exclusively, and job holds it until completion (sounds not good)

• Static resource allocation to jobs may prevent the best training performance[3]

Some Motivations or Problems?

Problem #1: Low resource utilization[4]

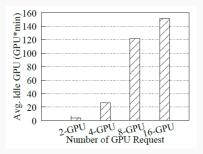


(a)GPU resource statistic on a GPU production cluster[4]

- A DLT job usually can only use parts of a GPU
 - Model training often involves many different steps, such as data preprocessing, etc. Some steps are not suitable for the GPU

Some Motivations or Problems?

Problem #1: Low resource utilization[4]



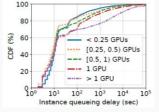
(b)Average GPU idle waiting waste from gang-schedule[4]

- Idle waiting for gang-schedule
 - Gang-schedule: DL training requires all the GPUs to be allocated simultaneously in an all-or-nothing manner
 - Multi-GPU training jobs require gang-scheduling
 - A job will not start training unless all required GPUs are simultaneously available

Some Motivations or Problems?

Problem #2: High Latency(head-of-line Blocking)[5]

(a)CDF of normalized instance queueing delays[5]



(b)CDF of queueing delays w.r.t. GPU requests per instance[5]

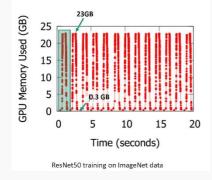
- Long queueing delays for short-running jobs
 - Long DLT job Runtime: Several days!
 - GPU sharing

Don't worry,

let's break it down!

A series of studies have characterized training workloads from the production GPU datacenters, including Alibaba [5], Microsoft [6] and SenseTime [7]. The characteristics are summarized as below.

• Domain knowledge: Intra-job predictability[6,8]

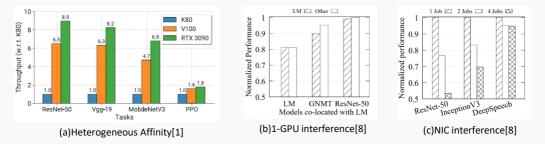


- Each job performs repetitive iterations with constant behaviors and duration
- To predict future GPU memory usage and job completion time

- Domain knowledge: Feedback-driven exploration[8]
 - Training a DL model is a typical trial-and-error process
 - Early-feedback on DLT jobs is critical, especially in the initial stages of training
 - Select the model structure
 - specify the hyper-parameters, including:
 - the number of layers/weights in the model
 - minibatch size
 - learning rate
 - ..

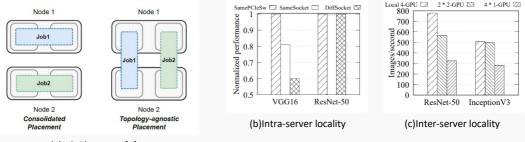
These are typically chosen by the user based on **domain knowledge** and **trialand-error**, and can sometimes even result in early training failure.

Inherent Heterogeneity[1](sounds not accurate) + Interference Sensitivity[8](



- When running in a shared execution environment, DLT jobs might interfere with each other due to resource contention
- Jobs widely differ in terms of memory usage, GPU core utilization, sensitivity to interconnect bandwidth, and/or interference from other jobs

• Placement Sensitivity[1,8]



(a)Job Placement[1]

- The runtime speed of some distributed DL jobs are bounded by device-to-device communication
- The communication sensitivity of training jobs depends on the inherent property of the model structure

Review the Cluster Schedulers Today

- Treat DLT jobs as generic big-data jobs(error)
 - DLT jobs exhibit certain unique features distinct from big data jobs[1] => get(

Causing some scheduling challenges?

1

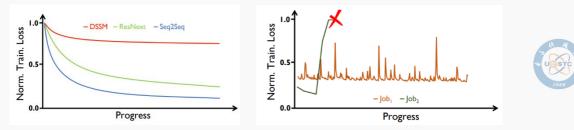
Making cluster scheduling of DLT jobs inefficient?

Expect users to specify the number of resources for each job(*sounds not good*)

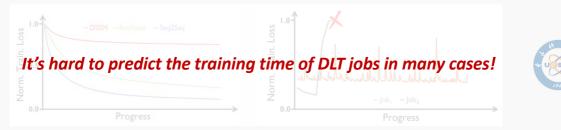
Schedule a DLT job on a GPU exclusively, and job holds it until completion (*sounds not good*)

==> Maybe it's a process of mutual influence

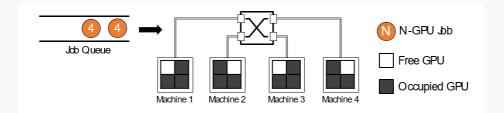
- Resource Scheduling: Unpredictable Training Time[9]
 - Unknown execution time of DL training jobs
 - Job execution time is useful when minimizing JCT(Job Completion Time)
 - · Predict job execution time
 - Use the smooth loss curve of DL training jobs(Optimus[10])



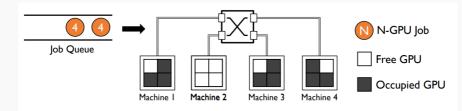
- Resource Scheduling: Unpredictable Training Time[9]
 - Unknown execution time of DL training jobs
 - Job execution time is useful when minimizing JCT
 - · Predict job execution time
 - Use the smooth loss curve of DL training jobs(Optimus[10])



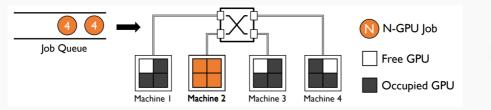
- Job Placement: Over-Aggressive Job Consolidation[9]
 - Network overhead in DL training



- Job Placement: Over-Aggressive Job Consolidation[9]
 - Network overhead in DL training
 - Consolidated placement for good training performance



- Job Placement: Over-Aggressive Job Consolidation[9]
 - Network overhead in DL training
 - Consolidated placement for good training performance
 - Fragmented free GPUs in the cluster
 - Longer queuing delay



Well,

everything seems to fit together!

Review the Cluster Schedulers Today

• Treat DLT jobs as generic big-data jobs(error)

DLT jobs exhibit certain unique features distinct from big data jobs[1] => get(\scriptly)

Causing some scheduling Making cluster scheduling Clustomize: An Effective and Efficient GPU Cluster Scheduler for Distributed Deep Learning Training Jobs

Expect users to specify the number of resources for each job(*sounds not good*)

Schedule a DLT job on a GPU exclusively, and job holds it until completion (*sounds not good*)

==> Maybe it's a process of mutual influence

Existing Work

Different Scheduling Objectives

Different Scheduling Objectives

- Reduce the average queuing and *execution time* of training jobs. \star \star \star
- Reduce power *consumption*. ★

•

- Guarantee the *fairness* among different entities (user-level, job-level).
- Maximize the *utilization* of resource. ★
- Ensure the job can be done before the **specified deadline**. \star

Reduce JCT(Job Completion Time)

• Optimus[10] (Elastic scheduling)

- Approach: Performance Modelling
- Advantages: JCT Reduction
- Tiresias[9]
 - Approach: Gittins index; Least-Attained Service (LAS)
 - Advantages: Information-agnostic
- Aonline[11] (Elastic scheduling)
 - Approach: Integer Linear Programming
 - Advantages: JCT Reduction

Other Objectives

- ANDREAS[12] (reduce energy consumption)
 - Approach: Randomized Greedy Algorithm
 - Advantages: Energy Cost Reduction
- Themis[13] (guarantee fairness)
 - Approaches: Finish-Time Fairness; Auction Bid
 - Advantages: Better Fairness
- Gandiva[8](maximize the utilization of resource)(Elastic scheduling)
 - Approaches: Time-slicing; Migration; Grow-shrink
 - Advantages: Better GPU Utilization
- Chronus[14](guarantee ddl)
 - Approach: Linear Programming; Local Search Allocation
 - Advantages: SLO Guarantee

Future Work And Discussion

Some Ideas? => Maybe they are enabled

• Objectives

- SLO guarantee
- Energy consumption optimization

• Considerations

- Resource heterogeneity
- Predicted job's information inaccuracy

• Methods

- GPU sharing
- Elastic scheduling

References

- Gao W, Hu Q, Ye Z, et al. Deep Learning Workload Scheduling in GPU Datacenters: Taxonomy, Challenges and Vision[J]. arXiv preprint arXiv:2205.11913, 2022.
- [2] Qiao A, Choe S K, Subramanya S J, et al. Pollux: Co-adaptive Cluster Scheduling for Goodput-Optimized Deep Learning[C]//OSDI. 2021, 21: 1-18.
- [3] Bao Y, Peng Y, Wu C, et al. Online job scheduling in distributed machine learning clusters[C]//IEEE INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, 2018: 495-503.
- [4] Xiao W, Ren S, Li Y, et al. AntMan: Dynamic Scaling on GPU Clusters for Deep Learning[C]//OSDI. 2020: 533-548.
- [5] Weng Q, Xiao W, Yu Y, et al. MLaaS in the wild: Workload analysis and scheduling in Large-Scale heterogeneous GPU clusters[C]//19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22). USENIX Association, 2022: 945-960.

- [6] Jeon M, Venkataraman S, Phanishayee A, et al. Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads[C]//USENIX Annual Technical Conference. 2019: 947-960.
- [7] Hu Q, Sun P, Yan S, et al. Characterization and prediction of deep learning workloads in largescale gpu datacenters[C]//Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2021: 1-15.
- [8] Xiao W, Bhardwaj R, Ramjee R, et al. Gandiva: Introspective cluster scheduling for deep learning[C]//13th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 18). 2018: 595-610.
- [9] Gu J, Chowdhury M, Shin K G, et al. Tiresias: A GPU Cluster Manager for Distributed Deep Learning[C]//NSDI. 2019, 19: 485-500.
- [10] Peng Y, Bao Y, Chen Y, et al. Optimus: an efficient dynamic resource scheduler for deep learning clusters[C]//Proceedings of the Thirteenth EuroSys Conference. 2018: 1-14.
- [11] Zhou R, Pang J, Zhang Q, et al. Online scheduling algorithm for heterogeneous distributed machine learning jobs[J]. IEEE Transactions on Cloud Computing, 2022.

- [12] Filippini F, Ardagna D, Lattuada M, et al. ANDREAS: Artificial intelligence traiNing scheDuler foR accElerAted resource clusterS[C]//2021 8th International Conference on Future Internet of Things and Cloud (FiCloud). IEEE, 2021: 388-393.
- [13] Mahajan K, Balasubramanian A, Singhvi A, et al. Themis: Fair and efficient GPU cluster scheduling[C]//17th USENIX Symposium on Networked Systems Design and Implementation. 2020.
- [14] Gao W, Ye Z, Sun P, et al. Chronus: A novel deadline-aware scheduler for deep learning training jobs[C]//Proceedings of the ACM Symposium on Cloud Computing. 2021: 609-623.

