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Introduction




Deep Learning: An important cloud workload

Deep Learning is ubiquitous: CV, NLP, Recommend...

DL jobs are compute-intensive, so need expensive hardware

* Dominant platform today: GPUs

* Large company runs DL in shared GPU clusters(billions of $)



Deep Learning Training (DLT)

e Build a model for an end-to-end application
* Select best model architecture, invent new architectures, tune accuracy, ...

* Key to DL Innovation

e DLT is mostly trial-and-error: Little theoretical understanding

e Will a model architecture work?
e Don’t know — Train it And Measure!
* Lots of trials => high cost:

* Training = Significant Fraction of GPU Usage!



DL Training in GPU Clusters

é § Scheduler

Many users and DLT jobs Shared Compute Cluster

Cluster scheduler decides how to allocate resources to jobs in order to minimize
training time, maximize cluster utilization, or ensure fairness



Q: How are DL training jobs scheduled in the
existing ML systems?

Like Borg(Google), Yarn(Hadoop), Mesos(Apache)...



Cluster Schedulers Today

e Treat DLT jobs as generic big-data jobs(error)

* DLT jobs exhibit certain unique features distinct from big data jobs[1]

e Expect users to specify the number of resources for each job(sounds not good)

* Rely heavily on the engineering experience of users = > Often leading to inefficient
resource use(2]

e Schedule a DLT job on a GPU exclusively, and job holds it until completion
(sounds not good)

* Static resource allocation to jobs may prevent the best training performance|[3]



Some Motivations or Problems?

Problem #1: Low resource utilization[4]
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Some Motivations or Problems?

Problem #1: Low resource utilization[4]
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Some Motivations or Problems?

Problem #2: High Latency(head-of-line Blocking)[5]
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e Long queueing delays for short-running jobs
* Long DLT job Runtime: Several days!
e GPU sharing



Don't worry,

let's break it down!



DLT Workloads’ Unique Characteristics

A series of studies have characterized training workloads from the production GPU
datacenters, including Alibaba [5], Microsoft [6] and SenseTime [7]. The characteristics
are summarized as below.

e Domain knowledge: Intra-job predictability[6,8]
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DLT Workloads’ Unique Characteristics

e Domain knowledge: Feedback-driven exploration[8]

* Training a DL model is a typical trial-and-error process

* Early-feedback on DLT jobs is critical, especially in the initial stages of training
* Select the model structure
* specify the hyper-parameters, including:
*  the number of layers/weights in the model

*  minibatch size

e learning rate

These are typically chosen by the user based on domain knowledge and trial-
and-error, and can sometimes even result in early training failure.



DLT Workloads’ Unique Characteristics

e Inherent Heterogeneity[1](sounds not accurate) + Interference Sensitivity[8](v)
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* When running in a shared execution environment, DLT jobs might interfere
with each other due to resource contention

* Jobs widely differ in terms of memory usage, GPU core utilization, sensitivity
to interconnect bandwidth, and/or interference from other jobs



DLT Workloads’ Unique Characteristics

e Placement Sensitivity[1,8]
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* The runtime speed of some distributed DL jobs are bounded by device-to-device
communication

* The communication sensitivity of training jobs depends on the inherent
property of the model structure



Review the Cluster Schedulers Today

e Treat DLT jobs as generic big-data jobs(error)

* DLT jobs exhibit certain unique features distinct from big data jobs[1] => get(v)

Causing some scheduling Making cluster scheduling
challenges? of DLT jobs inefficient?
Expect users to specify the number Schedule a DLT job on a GPU

of resources for each job(sounds exclusively, and job holds it until

not good) completion (sounds not good)

==> Maybe it's a process of mutual influence
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Challenges for Scheduling DL Training Jobs

e Resource Scheduling: Unpredictable Training Time[9]

* Unknown execution time of DL training jobs

* Job execution time is useful when minimizing JCT(Job Completion Time)

* Predict job execution time
e Use the smooth loss curve of DL training jobs(Optimus[10])
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Challenges for Scheduling DL Training Jobs

e Resource Scheduling: Unpredictable Training Time[9]

* Unknown execution time of DL training jobs

* Job execution time is useful when minimizing JCT

* Predict job execution time

e Use the smooth loss curve of DL training jobs(Optimus[10])

It’s hard to predict the training time of DLT jobs in many cases!



Challenges for Scheduling DL Training Jobs

e Job Placement: Over-Aggressive Job Consolidation[9]

* Network overhead in DL training
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Challenges for Scheduling DL Training Jobs

e Job Placement: Over-Aggressive Job Consolidation[9]

* Network overhead in DL training

* Consolidated placement for good training performance
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Challenges for Scheduling DL Training Jobs

e Job Placement: Over-Aggressive Job Consolidation[9]

* Network overhead in DL training

* Consolidated placement for good training performance

* Fragmented free GPUs in the cluster

* Longer queuing delay
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Well,

everything seems to fit together!



Customize: An Effective and Efficient GPU Cluster Scheduler for
Distributed Deep Learning Training Jobs



Existing Work

Different Scheduling Objectives




Different Scheduling Objectives

* Reduce the average queuing and execution time of training jobs. * % %
+ Reduce power consumption.

* Guarantee the fairness among different entities (user-level, job-level). ¥

* Maximize the utilization of resource. %

* Ensure the job can be done before the specified deadline.



Reduce JCT(Job Completion Time)

e Optimus[10] (Elastic scheduling)
* Approach: Performance Modelling
* Advantages: JCT Reduction
e Tiresias[9]
* Approach: Gittins index; Least-Attained Service (LAS)
* Advantages: Information-agnostic
e Aonline[11] (Elastic scheduling)
* Approach: Integer Linear Programming

* Advantages: JCT Reduction



Other Objectives

ANDREAS[12] ( )
* Approach: Randomized Greedy Algorithm

* Advantages: Energy Cost Reduction

Themis[13] (quarantee fairness)
* Approaches: Finish-Time Fairness; Auction Bid
* Advantages: Better Fairness

Gandiva[8]( )(Elastic scheduling)
* Approaches: Time-slicing; Migration; Grow-shrink

* Advantages: Better GPU Utilization

Chronus[14](guarantee ddl)

* Approach: Linear Programming; Local Search Allocation

* Advantages: SLO Guarantee



Future Work And Discussion




Some Ideas? => Maybe they are enabled

e Objectives

* SLO guarantee

* Energy consumption optimization
e Considerations

* Resource heterogeneity

* Predicted job’s information inaccuracy
e Methods

* GPU sharing

* Elastic scheduling
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